Two bijections on Tamari Intervals
نویسندگان
چکیده
We use a recently introduced combinatorial object, the interval-poset, to describe two bijections on intervals of the Tamari lattice. Both bijections give a combinatorial proof of some previously known results. The first one is an inner bijection between Tamari intervals that exchanges the initial rise and lower contacts statistics. Those were introduced by Bousquet-Mélou, Fusy, and Préville-Ratelle who proved they were symmetrically distributed but had no combinatorial explanation. The second bijection sends a Tamari interval to a closed flow of an ordered forest. These combinatorial objects were studied by Chapoton in the context of the Pre-Lie operad and the connection with the Tamari order was still unclear. Résumé. Nous utilisons les intervalles-posets, très récemment introduits, pour décrire deux bijections sur les intervalles du treillis de Tamari. Nous obtenons ainsi des preuves combinatoires de précédents résultats. La première bijection est une opération interne sur les intervalles qui échange les statistiques de la montée initiale et du nombre de contacts. Ces dernières ont été introduites par Bousquet-Mélou, Fusy et Préville-Ratelle qui ont prouvé qu’elles étaient symétriquement distribuées sans pour autant proposer d’explication combinatoire. La seconde bijection fait le lien avec un objet étudié par Chapoton dans le cadre de l’opérade Pré-Lie : les flots sur les forêts ordonnées. Le lien avec l’ordre de Tamari avait déjà été remarqué sans pour autant être expliqué.
منابع مشابه
A sequent calculus for the Tamari order
We introduce a sequent calculus with a simple restriction of Lambek’s product rules that precisely captures the classical Tamari order, i.e., the partial order on fully-bracketed words (equivalently, binary trees) induced by a semi-associative law (equivalently, tree rotation). We establish a focusing property for this sequent calculus (a strengthening of cut-elimination), which yields the foll...
متن کاملThe representation of the symmetric group on m-Tamari intervals
Anm-ballot path of size n is a path on the square grid consisting of north and east unit steps, starting at (0, 0), ending at (mn, n), and never going below the line {x = my}. The set of these paths can be equipped with a lattice structure, called the m-Tamari lattice and denoted by T (m) n , which generalizes the usual Tamari lattice Tn obtained when m = 1. This lattice was introduced by F. Be...
متن کاملCounting smaller trees in the Tamari order
We introduce new combinatorial objects, the interval-posets, that encode intervals of the Tamari lattice. We then find a combinatorial interpretation of the bilinear form that appears in the functional equation of Tamari intervals described by Chapoton. Thus, we retrieve this functional equation and prove that the polynomial recursively computed from the bilinear form on each tree T counts the ...
متن کاملTamari lattices, forests and Thompson monoids
A connection relating Tamari lattices on symmetric groups regarded as lattices under the weak Bruhat order to the positive monoid P of Thompson group F is presented. Tamari congruence classes correspond to classes of equivalent elements in P. The two well known normal forms in P correspond to endpoints of intervals in the weak Bruhat order that determine the Tamari classes. In the monoid P thes...
متن کاملIntervals of balanced binary trees in the Tamari lattice
We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T, T ′] where T and T ′ are balanced binary trees are isomorphic as posets to a hypercube. We introduce synchronous grammars that allow to generate tree-like structures and obtain fixed-point functional equations to enumerate these. We also introduce imbalance tree pattern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014